Present status and new perspectives in laser welding of vascular tissues.
نویسندگان
چکیده
The laser welding of biological tissues is a particular use of lasers in surgery. The technique has been proposed since the 1970s for surgical applications, such as repairing blood vessels, nerves, tendons, bronchial fistulae, skin and ocular tissues. In vascular surgery, two procedures have been tested and optimized in animal models, both ex vivo and in vivo, in order to design different approaches for blood vessels anastomoses and for the repair of vascular lesions: the laser-assisted vascular anastomosis (LAVA) and the laser-assisted vessel repair (LAVR). Sealing tissues by laser may overcome the problems related to the use of conventional closuring methods that are generally associated with various degrees of vascular wall damage that can ultimately predispose to vessel thrombosis and occlusion. In fact, the use of a laser welding technique provides several advantages such as simplification of the surgical procedure, reduction of the operative time, suppression of bleeding, and may guarantee an optimal healing process of vascular structures, very similar to restitutio ad integrum. Despite the numerous preclinical studies performed by several research groups, the clinical applications of laser-assisted anastomosis or vessel repair are still far off. Substantial breakthrough in the laser welding of biological tissues may come from the advent of nanotechnologies. Herein we describe the present status and the future perspectives in laser welding of vascular structures.
منابع مشابه
Role of low level laser in ameliorating the damaging effects of gamma irradiation on mice liver
Background: Exposure to ionizing radiation is inevitable. Using of low-level laser therapy (LLLT) stimulates tissue repair and reduces inflammation. The objective of the present study aimed at evaluating the therapeutic efficacy of Helium-Neon (He-Ne) laser in stimulating the reparative processes in the liver of mice after whole body gamma-irradiation (WBγ-I). Materials and Methods: Two hundred...
متن کاملStudy on the Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Ultrafine Grained 304L Stainless Steel
In the present study, an ultrafine grained (UFG) 304L stainless steel with the average grain size of 300 nm was produced by a combination of cold rolling and annealing. Weldability of the UFG sample was studied by Nd: YAG laser welding under different welding conditions. Taguchi experimental design was used to optimize the effect of frequency, welding time, laser current and laser pulse duratio...
متن کاملMicro Laser Welding of AISI 430 Ferritic Stainless Steel: Mechanical Properties, Magnetic Characterization and Texture Evolution
In the present work, a high power Nd:YAG laser has been employed to weld AISI 430 ferritic stainless steel thin sheets. Optical microscopy was used to study the microstructural evolutions during laser welding. Tensile test and microhardness measurement were employed in order to investigate the mechanical behaviors of welds. Also, vibrational sample magnetometry was used for characterizing magne...
متن کاملNew-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing
Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...
متن کاملSimulation of effective parameters on low-carbon steel laser welding process using finite element method
In this paper, laser beam welding of a rectangular piece of steel was simulated using Fluent software. Physical properties of analytical field was constant and its changes with temperature was ignored. In the present work, effect of tool speed and laser power on temperature distribution of workpiece surface and different deeps in the plane of symmetry and also maximum of temperature and depth o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biological regulators and homeostatic agents
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2011